
Current state and 2012-2013 retrospective

David Tschumperlé, Jérome Boulanger and Patrick David

Libre Graphics Meeting, Madrid / Leipzig, April 2014

Project Overview

The G’MIC project : Overview

http://gmic.sourceforge.net

A free software which aims at providing user interfaces to perform
complex image processing operations.

Technical means : G’MIC defines its own script language,
specifically designed to build image processing pipelines. The
G’MIC language interpreter is then embedded in all proposed user
interfaces.

G’MIC script language
Full-featured: More than 800 commands available for image
visualization, filtering, geometry / color management, features
extraction, 3d rendering, matrix computations, graphical plots, ...
Conciseness: The G’MIC language has been designed
specifically for being concise. This is an interpreted language,
which can be extended by custom user-defined functions.

−→ Technical documentation (.pdf) has more than 400 pages.
−→ 83k lines for the whole source code (CImg included).

G’MIC integration

G’MIC provides an open-source implementation of the language
interpreter (as a C++ library).

I Integrations: Third-party softwares can easily get all G’MIC
features (interesting for image retouching or painting softwares, ...).

I Free software: The G’MIC interpreter is distributed under the
CeCILL license (GPL-compatible).

−→ Examples of integrations:
F Krita (plug-in), painting software, integration started in 2013.
F EKD, video editing software, integration started in 2010.
F Planned: Delaboratory, RAW photograph postprocessing application.

G’MIC interfaces : CLI

gmic: Tool to manipulate the G’MIC interpreter from the
command line (CLI). Competitor to the CLI tools of the
ImageMagick / GraphicsMagick projects.

G’MIC interfaces : GIMP plug-in

gmic_gimp: Plug-in for GIMP, provides more than 600 image
filters.

G’MIC interfaces : Web service
G’MIC Online: Web service for manipulating images online (like
the GIMP plug-in, with less filters and running on a web browser).
https://gmicol.greyc.fr

G’MIC interfaces : Webcam effects

ZArt: A QT-based interface for manipulating images acquired
from the webcam (used as a demonstration plateform).

G’MIC components

 CImg
(C++ library)

G'MIC interpreter
 (C++)

 gmic
(console)

 gmic_gimp
(plug-in GIMP)

 gmicol
(web service)

libgmic
 (C++)

 ZArt
(webcam GUI)

 Custom commands
 (G'MIC script)

Filter Showcase:

Polygonize

Artistic : Polygonize

Goal: Transform an image into a polygonized rendering with
triangles having uniform flat colors.
Made by : David, to test the stability of 3d flat objects rendering in
G’MIC. Then, we realized it was a cool filter, so we kept it ,.
How is this done? Starting from an uniform grid, we move the
grid points iteratively towards the nearest contour points.

=⇒ 35 lines of G’MIC code.
(all included: GUI description + algorithm).

Artistic : Polygonize

Open input image.

Artistic : Polygonize

Invoke G’MIC plug-in and select Artistic / Polygonize.

Artistic : Polygonize

Get your polygonized result.

Artistic : Polygonize

Another filter variation created by Samj on GimpChat (folded paper?).

Filter Showcase:

Rodilius

Artistic : Rodilius

Goal: Try to mimic the famous Fractalius effect from Redfield
(39.90$ plug-in for Photoshop).
Made for : Rod on GimpChat has designed a first version of the
filter as a FilterForge pipeline. David has translated it into G’MIC
code.
How is this done? We compute linear blurs with various
orientations then mix them all using Lighten only or Darken only
blending modes. Additional (aggressive) anisotropic smoothing
and sharpening are added on each orientation layer.

=⇒ 28 lines of G’MIC code.
(all included: GUI description + algorithm).

Artistic : Rodilius

Open input image.

Artistic : Rodilius

Invoke G’MIC plug-in and select Artistic / Rodilius.

Artistic : Rodilius

Wait a little bit, then enjoy ! (recently parallelized for speeding up FFTs).

Artistic : Rodilius

Two other examples, works quite well on fur.

Artistic : Rodilius

Another example : with Darken only blending mode used.

Filter Showcase:

Colorize [comics]

Black & White : Colorize [comics]

Goal: Help coloring black and white sketches by allowing the
artist to drawn only small color spots inside the regions to fill-in.
Made by : David for David Revoy and Thimothé Giet, two artists
(famous Krita users), after they have seen the Lazy Brush plug-in
for TVPaint.
How is this done? Color spots are extrapolated considering
edge-based priority maps, with a watershed-like algorithm.

=⇒ 44 lines of G’MIC code.
(all included: GUI description + algorithm).

Black & white : Colorize [comics]

Open input image (here, two layers : dark lineart + white background).

Black & white : Colorize [comics]

Add top layer with color spots on it.

Black & white : Colorize [comics]

Invoke G’MIC plug-in and select Black & White / Colorize [comics].

Black & white : Colorize [comics]

Wait a little bit, and enjoy !

Black & white : Colorize [comics]

Another example from Thimothé Giet: Original lineart + color strokes.

Black & white : Colorize [comics]

Result of the G’MIC Colorize [comics] filter.

Filter Showcase:

Colorize [photographs]

Black & White : Colorize [photographs]

Goal: Same goal as before but for more classical photographs.
Made by : David, to test the extension of the previous colorization
algorithm to usual photographs.
How is this done? Same kind of color extrapolation but only on
the chrominance channels CbCr of the input image, so that
luminance is preserved.

=⇒ 24 lines of G’MIC code.
(all included: GUI description + algorithm).

Black & white : Colorize [photographs]

Open input image (single-layer B&W photograph).

Black & white : Colorize [photographs]

Add top layer with color strokes on it.

Black & white : Colorize [photographs]

Invoke G’MIC plug-in and select Black & White / Colorize [photographs].

Black & white : Colorize [photographs]

Result of the filter (courtesy of pogogogo / GimpChat).

Filter Showcase:

Split details

Details : Split details

Goal: Allow the decomposition of an image into several scales of
details, so one can work on these different scales separately.
Made by : Jérome and David for having something similar to the
Wavelet decompose feature in G’MIC.
How is this done? Images are decomposed/recomposed using a
stack of gaussian-filtered image pyramids + residuals.

=⇒ 74 lines of G’MIC code.
(all included: GUI description + algorithm).

Details : Split details

Open input image.

Details : Split details

Invoke G’MIC plug-in and select Details / Split details.

Details : Split details

You get your input (top-left) + the decomposition into scales (here 3 scales).

Details : Split details

Do what you want on the scales (here, we simply erase the skin defects on
the middle scale).

Details : Split details

Invoke G’MIC plug-in again, to recompose the final image.

Details : Split details

Result of the recomposition, with cleaner skin (5mn work !).

Details : Split details

Comparison with initial image.

Filter Showcase:

Extract objects

Arrays & Tiles : Extract objects

Goal: Extract independent objects located on a flat colored
background.
Made by : David, to ease the use of the next filter Pack Sprite.
How is this done? Background pixels are extracted (by their
color), then the residual pixels are grouped into several connected
regions corresponding to the objects to extract.

=⇒ 72 lines of G’MIC code.
(all included: GUI description + algorithm).

Arrays & Tiles : Extract objects

Open input image (single-layer).

Arrays & Tiles : Extract objects

Invoke G’MIC plug-in and select Arrays & tiles / Extract object.

Arrays & Tiles : Extract objects

Output looks similar as input, but is divided into several layers.

Arrays & Tiles : Extract objects

Managing each object independently is now possible (here, position change).

Filter Showcase:

Pack sprites

Patterns : Pack sprites

Goal: Render an image where several small images have been
packed together (scaled and rotated) without intersecting.
Made by : David, for Lyle Kroll on GimpChat who has asked this
for a long time.
How is this done? Pseudo random positions (random + heuristic)
are iteratively tried to pack images, with decreasing scales.

=⇒ 122 lines of G’MIC code.
(all included: GUI description + algorithm).

Patterns : Pack sprites

Select your objects to pack (multi-layer image).

Patterns : Pack sprites

Invoke G’MIC plug-in and select Patterns / Pack sprites.

Patterns : Pack sprites

Get your image with randomly packed sprites (after a while).

Patterns : Pack sprites

Now, you can add a bottom layer to restrict packing on transparent regions.

Patterns : Pack sprites

Invoke G’MIC again, and select Mask : Mask as bottom layer.

Patterns : Pack sprites

Go for a coffee, and you get this.

Patterns : Pack sprites

Detail of the result.

Patterns : Pack sprites

Example of rendering, by Chris Fiedler, on GimpChat.

Filter Showcase:

Shapeism

Artistic : Shapeism

Goal: Try to get close to the Circlism effect from artist Ben Heine
(who do this manually, takes days), i.e. render an image with
non-intersecting colored circles (or other shapes).
Made by : David, for Lyle Kroll on GimpChat who has asked this
for a long time.
How is this done? Multi-scale monochrome shapes are packed
together with a priority to put smaller shapes on image contours,
then each shape is colored separately according to the
corresponding image color behind.

=⇒ 75 lines of G’MIC code.
(all included: GUI description + algorithm).

Artistic : Shapeism

Open input image.

Artistic : Shapeism

Invoke G’MIC plug-in and select Artistic / Shapeism.

Artistic : Shapeism

Go drink a (big) coffee, and enjoy the result ! (can be slow to compute).

Artistic : Shapeism

Result with another shape selected (a star).

Filter Showcase:

Inpainting [patch-based]

Repair : Inpaint [patch-based]

Goal: Automatically heal missing image regions with a
texture-aware algorithm. Similar to what the Resynthetizer plug-in
does, but directly in G’MIC.
Made by : David and Maxime, to have an alternate healing
method in an active project (Resynthetizer looks stagnant).
How is this done? It implements the Criminisi-Perez-etal’s
patch-based inpainting algorithm + a patch blending technique
we’ve specifically designed.

=⇒ 427 lines of C++ code (native command) + 35 lines of G’MIC code.
(all included: GUI description + algorithm).

Repair : Inpainting

Open input image.

Repair : Inpainting

Draw an inpainting mask directly on it (with a constant known color).

Repair : Inpainting

Invoke G’MIC plug-in and select Repair / Inpaint [patch-based].

Repair : Inpainting

If you choose carefully the parameters, this is what you get.

Repair : Inpainting

Example from Patrick David: Input image.

Repair : Inpainting

Example from Patrick David: Inpainted image.

Repair : Inpainting

Example from Patrick David: Input image.

Repair : Inpainting

Example from Patrick David: Inpainted image.

Repair : Inpainting

Comparison with Resynthetizer (Extreme case!):
Input image (boat to be removed).

Repair : Inpainting

Result by the Resynthetizer heal selection algorithm.

Repair : Inpainting

Result by the G’MIC inpainting algorithm.

Filter Showcase:

Denoising filters

Repair : Denoising filters

Goal: Provide a lot of algorithms to smooth images without losing
(too much) the details and the textures, e.g. to remove shot noise.
Made by : David, Jérome, Iain and others.
Made for : A lot of people need this. This is the logical sequel of
our previous plug-in called GREYCstoration (now discontinued).
How is this done? Lot of different smoothing algorithms have
been implemented in G’MIC: Diffusion PDE’s, NL-means,
Wavelets-based, etc... In 2013, we have parallelized most of them.

Repair : Denoising filters

Open input (noisy) image.

Repair : Denoising filters

Open input (noiy) image (detail).

Repair : Denoising filters

Invoke G’MIC plug-in, and select one of the denoising filters
(more than 20 methods available).

Repair : Denoising filters

Denoised result (with heavy parameters for making the effect more clear).

Repair : Denoising filters

Comparison between original / denoised image (equalized images for clarity).

Filter Showcase:

Dream smoothing

Artistic : Dream smoothing

Goal: Apply exaggerated edge-directed smoothing and boost
colors to create a kind of painting effect.
Made by : Arto Huotari (aka Naggobot), artist and coder at the
same time, who uses it on his own photographic workflow.
How is this done? It intensively uses anisotropic smoothing
(native G’MIC feature) as well as aggressive color mixing.

=⇒ 76 lines of G’MIC code.
(all included: GUI description + algorithm).

Artistic : Dream smoothing

Open input image.

Artistic : Dream smoothing

Invoke G’MIC plug-in and select Artistic / Dream Smoothing.

Artistic : Dream smoothing

Enjoy your result ! (takes some time to render, recently parallelized).

Artistic : Dream smoothing

How artists use it for real: Processing done by Zarir Madon.

Artistic : Dream smoothing

How artists use it for real: Processing done by Arto Huotari.

Filter Showcase:

Film emulation

Repair : Film emulation

Goal: Provide free film emulation filters, similar to what
proprietary DXO FilmPack proposes.
Made by : Patrick requested David to make his color profiles
easily available for everyone.
How is this done? Color transformations are encoded as RGB
CLUT files, stored on the G’MIC server. Each color profile is
downloaded on demand.

=⇒ 476 lines of G’MIC code (mostly for GUI).
(all included: GUI description + algorithm).

Film emulation

Open input image.

Film emulation

Invoke G’MIC plug-in, and choose one filter in folder Film emulation/.

Film emulation

Comparison: Before (left) / After (right).

Film emulation

Two other examples: TMAX-3200 (left) and Kodak Kodachrome 64 (right).

Film emulation

Patrick David has indeed done a lot of presets (here, a sample of them).

Film emulation

Technically speaking:

Each preset defines a mapping
function from RGB to RGB (CLUT).

The values of these functions are
explicitely stored for all RGB colors.

To avoid huge datasets, we consider
64x64x64 downsampled versions of
the CLUTs and interpolate
intermediate colors.

→ 77Mb of data for 271 film emulation
presets.

As the original color mappings are
smooth functions, interpolation has
almost no incidence on the quality.

Film emulation

Once downloaded, presets are stored locally on your drive for off-line use.

Conclusions

Conclusions & The end

G’MIC is really meant to be a generic image processing
framework.
All filters we regularly can be potentially available for all interfaces
or open-source projects that integrates the G’MIC library.
Since the beginning, lot of filters have been done in collaboration
with artists. Lot of good ideas come from users.

Thanks for your attention!
Any questions ?

