
An Automated Sprite Rendering System
using Blender

Kenan Bölükbaşı

2014-04-03 Thu



An Automated Sprite Rendering System using
Blender

The point of the talk is not really to introduce the system, but
to show how easily such a system can be put together on top
of F/LOSS stack in a short amount of time, by example.



What is it?
I It is an in-house automated sprite rendering system using

Blender. No name yet.
I It makes the job of our designers much easier by

automating everything possible and by making visual
revisions on all graphics easier and more interactive.

I Works completely on Blender, except cli written as shell
script.

I Written in Python and Bash. ˜500 loc.
I The base system is written in 1 month by one person, me.
I The atlas generator is written by İsmail Döner, who also

wrote the whole in-house game engine.
I Not released yet. Plan is to release it as F/LOSS at some

point.
I We would love to hear if there is interest in such software.



It briefly

I Uses 3D models generated in the design department as
Collada exchange files.

I Afterwards the system automatically:
I imports the model
I adds

I shading,
I texturing,
I lighting,
I cameras,
I environment,
I effects

I adjust settings and renders sprite
I generates atlas
I compiles/runs the game demo



Who am I?

I Kenan Bölükbaşı
I İstanbul, Turkey.
I CG Generalist
I Hobbyist programmer and designer
I Fully F/LOSS software stack for 6 years as a professional
I Lead of Graphics Department at Ekseriya Studios.
I I heavily use Blender, Gimp, Inkscape and ImageMagick

on Arch Linux.



Who are we?

I Ekseriya Studios
I We are a game development studio located in İstanbul.
I Completely F/LOSS technology stack on development.
I Fully in-house production infrastructure and game-engine.
I Small, very ambitious team.
I 7 people working on the project. (development: 3 &

graphics: 4)



What is the project?

I An online multi-player cross-platform (mobile & desktop)
strategy game.

I Project uses sprite graphics.
I An interactive development process was requested.



Why such system?

I Process was hard and problematic to maintain manually.
I Too many assets, easy to make mistakes.
I Varying settings:

I Grid size
I Directions

I So much repetitive work.
I Concept revisions are very common.
I Materials and lighting are due to change.
I Models should be rendered with varying number of

directions.
I Sprites should be managed properly for atlas generation.



To sum up

I So much repetitive, variation.
I Simply library linking didn’t solve many problems in this

case.
I Almost everything will drastically change.
I Almost everything will drastically change again.
I We need to keep up with requests and constantly push

new graphics in-game.



I realized

I I need some kind of a system to optimize labor.
I I need a centralized mechanism of control.
I I never done Python before, but it is easy!



Aim



Later Additions

I Framestep
I Proper handling of imports for easy modification in

Blender.
I Collada support to make it modeling software agnostic.
I Several Animation Directions
I Explosion Particles
I VFX
I Compositing
I Atlas Mipmap
I GPU Supported Texture Compression
I Cygwin Compability
I Distributed rendering, almost.



How: Project Root Directory



How: Asset Directory



How: The System



Example

$ sprite -nira beamer helix air-missiles hadron-collider tesla-coil
battle-cruiser marauder



Results



Results



Results



Results



Why using F/LOSS?

You know why.



Contact

I Twitter: @kenanbolukbasi
I Mail: kenanbolukbasi@gmail.com
I Website: kenanb.com
I github: github.com/kenanb
I freenode: kenanb
I Ekseriya: ekseriya.com

http://www.twitter.com/kenanbolukbasi
mailto:kenanbolukbasi@gmail.com
http://www.kenanb.com
http://www.github.com/kenanb
http://www.ekseriya.com


Thanks

I Thanks to F/LOSS community.
I Special thanks to Libre Graphics Community.
I Even more special thanks to Blender Foundation and

community.
I Thanks to Emacs, Org-Mode, Beamer, LibreOffice, GIMP

for presentation tools.


